Master of Science in Physics Program code: 043010

INTRODUCTION

The Department of Physics (College of Science) offers a Master of Science program in **Physics**. The program is designed to prepare individuals for a career in college or university teaching and research; a leadership role in secondary school science education; employment in technically oriented positions in government, business, or industrial laboratories, and to continue graduate education towards the Ph.D. degree. A wide range of potential areas for research are available for students to choose from. This includes: Atomic, Molecular, Solid State, Nuclear and Digital Electronics. Only thesis option is offered.

According to the University Council decision dated 4/2/2007, Thesis students admitted with effect from September 2007 are exempted from the comprehensive examination.

PROGRAM REQUIREMENTS

31 TOTAL COURSE CREDITS

13 COMPULSORY (credits in parenthesis)

0430-501	Classical Mechanics	(3)
0430-503	Classical Electrodynamics	(3)
0430-505	Quantum Mechanics I	(3)
0430-507	Mathematical & Computational Methods	(3)
0430-590	Seminar	(1)

9 ELECTIVES* (3 credits each)

	,
0430-508	Special Topics I. Physics
0430-509	Special Topics II. Engineering Physics
0430-510	Atomic Spectra
0430-512	Laser Physics
0430-514	Theory of Atomic Collisions
0430-520	Molecular Spectroscopy I
0430-521	Molecular Spectroscopy II
0430-523	Photo physics
0430-525	Raman Spectroscopy
0430-530	Solid State Physics I
0430-531	Solid State Physics II
0430-533	Semiconductors
0430-535	Thermal Solar Processes
0430-540	Quantum Mechanics II
0430-542	Field Theory

0430-545	Particles and Symmetries
0430-550	Nuclear Physics I
0430-551	Nuclear Physics II
0430-563	Advanced Digital Signal Processing
0430-570	Physics and Applications of GPS
0430-571	Synthetic Aperture Radar Interferometry
0430-572	Synthetic Aperture Radar Processing
0430-574	Solar Plasma and Cosmic Rays

^{*}Students may substitute up to 6 credit hours from the upper elective Physics undergraduate courses (400 level) with the approval of the Program Director.

9 COMPULSORY COURSES

0430-597	Thesis	(0)
0430-598	Thesis	(0)
2000-599	Thesis	(9)

COURSE DESCRIPTION

0430-501: CLASSICAL MECHANICS CR: 3

Mechanics in the Lagrangian formulation; two body central force problem; rigid body dynamics; Hamiltonian formulation; canonical transformations; covariant relativistic mechanics; small oscillations.

0430-503: CLASSICAL ELECTRODYNAMICS CR: 3

Electrostatics; boundary value problems; multiple expansion; Maxwell's equations; electromagnetic waves; radioactive systems.

0430-505: QUANTUM MECHANICS I CR: 3

Theory of states and operators in Hilbert space; the Schrodinger equation. Heisenberg and interaction representation; perturbation theory; approximation methods; spin and the identity of particles; scattering theory; application to actual quantum systems.

0430-507: MATHEMATICAL AND COMPUTATIONAL METHODS CR: 3

Special functions; integral equations; integral transforms; Green's functions; computer programming techniques; programming languages; computer operating systems; computer-aided solutions of physical problems.

0430-510: ATOMIC SPECTRA CR: 3

Methods of atomic structure calculations; manyelectron configurations; coupling schemes in complex spectra; fine structure and multiple analysis; series perturbations and ionization limits; Zeeman and Stark effects; spectral line shape theory; plasma spectroscopy.

0430-512: LASER PHYSICS CR: 3 PR:0430-505 or equivalent

Interaction of atomic systems with radiation field; semiclassical theory of laser; multimode operation; quantum theory of radiation and laser; coherent states; laser fluctuations, photon statistics and noise.

THEORY OF ATOMIC 0430-514: **COLLISIONS**

CR: 3 PR:0430-505 or equivalent

Quantum statement of the problem; partial wave analysis; Ramsauer effect; variational principles for phase shift; electron hydrogen scattering problem; pauli principle and spin in collision processes; Stueckelberg theory; Coulomb scattering; excitation and ionization by electron and heavy ion impact.

MOLECULAR SPECTROSCOPY I 0430-520: CR: 3 PR: 0430-505 or equivalent

Annular momentum and symmetry in diatomic and polyatomic molecules; molecular orbital theory.

MOLECULAR SPECTROSCOPY II 0430-521: CR: 3 PR: 0430-520 or equivalent

Ligand field theory; group theory; applications.

0430-523: **PHOTOPHYSICS**

CR: 3 PR: 0430-520 or equivalent

Excited states of polyatomic molecules; absorption, fluorescence, and phosphorescence; excimers (liquids and crystals); molecular complexes and exciplexes; energy migration and transfer (liquids and crystals); quenching of excited states; delayed emission.

RAMAN SPECTROSCOPY 0430-525: CR: 3 PR: 0430-520 or equivalent

Introduction to the Raman effect; polarisability tensor and selection rules; symmetry effects; vibrational Raman effect; rotational and electronic Raman effect; applications.

0430-530: SOLID STATE PHYSICS I $CR \cdot 3$

A review of band structure of solids, Fermi surfaces and metals; Optical processes, dielectrics and optical properties of solids, ferroelectrics; Magnetism and its applications, superconductivity.

0430-531: SOLID STATE PHYSICS II CR: 3 PR: 0430-530, 0430-505

Interacting electron gas model of solids, Hartree-Fock Approximation, Inhomogeneous interacting electron gas, the Thomas Fermi theory leading to the density functional theory, one-electron band theory of solids, Band structure calculation methods, the tight-binding and multiple scattering approaches, Metallic magnetism-local magnetic moments, mean-eld theory of magnetic.

0430-533: SEMICONDUCTORS

 $CR \cdot 3$

Physical principles of semiconductors and their application to various electronic and optical devices; band structure; intrinsic and extrinsic semiconductors and their statistical transport properties; optical properties; the junction diode and the transistor; tunnel diode; gunn diode; infrared detectors; solar cell; semiconductor lasers;

0430-535: THERMAL SOLAR PROCESSES $CR \cdot 3$

Solar insulation; absorption, transmission and reflection of radiation by surfaces; blackbody radiation and absorption; solar collectors, application of solar thermal energy to heating and cooling of buildings; solar thermal stations; advanced applications.

0430-540: **OUANTUM MECHANICS II** CR: 3 PR: 0430-505 or equivalent

Theory of angular momentum, symmetry; coherence of states; the density matrix; the Dirac equation; quantization of the electromagnetic field; applications.

0430-542: FIELD THEORY CR: 3 PR: 0430-501, 0430-503, 0430-505

Klein-Gordon equation; dirac equation; second quantizaon of fields with spins 0.1/2 and 1, interaction between fields; scattering and the 5matrix; Feynman diagrams; re normalization theory.

0430-545: PARTICLES AND SYMMETRIES CR: 3 PR: 0430-542 or equivalent

Hadrons and leptons; conservation laws; resonance; Lie algebras; SU(2) and SU(3); Young diagrams and representations; multiples; mass formulas; cross sections; strong and weak interactions; gauge symmetries.

NUCLEAR PHYSICS I 0430-550: CR: 3

Static properties of nuclei; nuclear forces; nuclear models; single particle and shell models;

vibrational and collective models; liquid drop model; nuclear fission.

0430-590: SEMINAR

CR:1

0430-551: NUCLEAR PHYSICS II

0430-597: THESIS

CR: 3 PR: 0430-550 or equivalent

CR: 0

Nuclear reactions; direct and compound nuclear reactions; deep inelastic collisions; alpha decay; beta decay; electromagnetic transitions.

0430-598: THESIS

CR: 0

0430-563: ADVANCED DIGITAL SIGNAL

PROCESSING

2000-599:

THESIS CR: 9

CR: 3

Review of discrete transforms for LTI analysis, Digital filters, Multirate DSP, Design of Linear Filters for Prediction and Optimization, Adaptive filters, Power spectrum analysis, Wavelets, Digital speech processing, Digital image processing, Applications and examples.

0430-570: PHYSICS AND APPLICATIONS

OF GPS

CR: 3

Precession position measurement, three dimensional transformation equations, atmospheric and relativist error sources, signal characterization and analysis, correlation studies, GAMIT software.

0430-571: SYNTHETIC APERTURE RADAR INTERFEROMETRY

CR: 3

Concepts of interferometry, review of radar fundamentals, statistical techniques, image formation, Digital Elevation Models, GPS, land subsidence and deformation vectors.

0430-572: SYNTHETIC APERTURE RADAR INTERFEROMETRY

CR: 3

Radar systems, SAR geometry, range compression, azimuth compression, pixel migration, focusing, band width and phase concepts.

0430-574: SOLAR PLASMA AND COSMIC RAYS CR:3

Start with our nearest star and its atmosphere, solar plasma and interplanetary magnetic field, transport and acceleration of particles in space, galactic cosmic rays, solar flares and coronal mass ejections, space weather and geomantic activity, time series analysis.